Noise Barriers



Federal Highway Administration

Gregg G. Fleming Edward J. Rickley

U.S. Department of Transportation Research and Special Programs Administration John A. Volpe National Transportation Systems Center Acoustics Facility Cambridge, MA 02142-1093

Performance Evaluation of

**Experimental Highway** 

Final Report May 1994

This document is available to the public through the National Technical Information Service, Springfield, VA 22161

#### 

#### Prepared for

U.S. Department of Transportation Federal Highway Administration Office of Engineering and Highway Operations Research and Development Mclean, VA 22101-2296 Prepared by

U.S. Department of Transportation Research and Special Programs Administration Volpe National Transportation Systems Center Cambridge, MA 02142-1093

#### FOREWORD

Noise is an important environmental consideration for highway planners and designers. It can annoy and cause psychological or physiological harm, depending on frequency characteristics and loudness. The U.S. Department of Transportation and State transportation agencies are charged with the responsibility of optimizing compatibility of highway operations with environmental concerns. Highway noise problems have been addressed by numerous investigations, including evaluations of the following:

- (1) Noise sources and highway noise reference mean emission levels.
- (2) Noise impacts at receptor locations.
- (3) Effects of site geometry, meteorology, ground surface
- conditions, and barriers on noise propagation.
- (4) Alternative methods of mitigating noise impacts.

The use of noise barriers along roadways is one of the principal means of mitigating vehicle noise. In an effort to maximize barrier performance and minimize costs, the Federal Highway Administration along with 17 sponsoring State transportation agencies initiated the National Pooled-Fund Study (NPFS), "Evaluation of Performance of Experimental Highway Noise Barriers." The multi-year study was conducted by the Research and Special Programs Administration, John A. Volpe National Transportation Systems Center. It was initially directed at the evaluation of parallel barriers under controlled traffic conditions at a test site located at Dulles International Airport near Washington, DC. The main results of this study have been reported in FHWA-RD-90-105, Parallel Barrier Effectiveness, Dulles Noise Barrier Project. The study was then expanded to examine the effectiveness of a parallel barrier located along Interstate 495 in Montgomery County, Maryland. The main results of this study have been reported in FHWA-RD-92-068, Parallel Barrier Effectiveness Under Free-Flowing Traffic Conditions.

This report summarizes the findings of the NPFS, in addition to presenting additional analyses of previously collected data. It will be of interest to engineers and other individuals involved in the mitigation of highway noise.

All data pertaining to the experimental conditions and measurements performed during the course of the NPFS have been archived at the John A. Volpe National Transportation Systems Center in Cambridge, MA.

> Charles J. Nemmers Director, Office of Engineering and Highway Operations Research and Development

#### NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. This report does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this document.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IENTATION PAGE             | Form Approved<br>OMB No. 0704-0188                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------|
| Public reporting burden for this collection of information is estimated to average 1 hour per response, including th<br>instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewi<br>information. Send comments regarding this burden estimate or any other aspect of this collection of information, in<br>for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1<br>Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Proje<br>Washington, DC 20503. |                            |                                                                             |
| 1. AGENCY USE ONLY (Leave blank)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2. REPORT DATE<br>May 1994 | 3. REPORT TYPE AND DATES COVERED<br>Final Report<br>October 1986-April 1994 |

| 4. TITLE AND SUBTITLE<br>PERFORMANCE EVALUATION OF<br>EXPERIMENTAL HIGHWAY NOISE BARRIERS<br>6. AUTHOR(S)<br>Gregg G. Fleming, Edward J. Rickley                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                |                                                                                         | 5. FUNDING NUMBERS<br>HW427/H4005/4K2                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 7. PERFORMING ORGANIZATION N<br>U.S. Department of Trans<br>Research and Special Pro<br>John A. Volpe National T<br>Cambridge, MA 02142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AME(S) AND ADDRESS(ES)<br>portation<br>grams Administration<br>ransportation Systems Cent                      | er                                                                                      | 8. PERFORMING ORGANIZATION<br>REPORT NUMBER<br>DOT-VNTSC-FHWA-94-16                     |
| 9. SPONSORING/MONITORING AGE<br>U.S. Department of Trans<br>Federal Highway Administ<br>Office of Engineering an<br>Operations Research and<br>McLean, VA 22101-2296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NCY NAME(S) AND ADDRESS(ES)<br>portation<br>ration<br>d Highway<br>Development                                 |                                                                                         | <pre>10. SPONSORING/MONITORING<br/>AGENCY REPORT NUMBER<br/>FHWA-RD-94-???</pre>        |
| 11. SUPPLEMENTARY NOTES<br>FHWA Program Manager: Howar<br>Robert E. Armstrong, HEP-41,<br>of the following states: AZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d A. Jongedyk, HNR-30, Office<br>Office of Environment and Pla<br>, CA, CT, FL, GA, HI, IA, MD,                | of Engineering and Highway<br>nning. This study, through<br>MA, MI, NJ, NY, OH, PA, VA, | Operations Research and Developmer<br>pooled funds, was supported by the<br>WA, and WI. |
| 12a. DISTRIBUTION/AVAILABILI<br>This document is availab<br>Technical Information Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TY STATEMENT<br>le to the public through t<br>rvice, Springfield, VA 22                                        | the National<br>2161                                                                    | 12b. DISTRIBUTION CODE                                                                  |
| 13. ABSTRACT (Maximum 200 words)<br>During the period, October 1986 through April 1994, the U.S. Department of Transportation,<br>Research and Special Programs Administration, John A. Volpe National Transportation<br>Systems Center, in support of the Federal Highway Administration and seventeen sponsoring<br>state transportation agencies conducted the National Pooled-Fund Study (NPFS), HP&R 0002-<br>136, "Evaluation of Performance of Experimental Highway Noise Barriers." The first<br>publication supporting the NPFS, FHWA-RD-90-105, "Parallel Barrier Effectiveness, Dulles<br>Noise Barrier Project," presented the results for parallel barriers subject to controlled<br>traffic conditions. The second publication, FHWA-RD-92-068, "Parallel Barrier<br>Effectiveness Under Free-Flowing Traffic Conditions," presented the results for parallel<br>barriers located along Interstate 495 in Montgomery County, Maryland. This report is the<br>third and final publication supporting the NPFS. In addition to presenting the results<br>of additional analyses of previously collected data, it summarizes the findings of the<br>multi-year study. |                                                                                                                |                                                                                         |                                                                                         |
| 14. SUBJECT TERMS<br>Noise, Highway Noise, Pa<br>Multiple Reflections, Re<br>Barrier, Tilted Noise Ba<br>Degradation, Width-to-He                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rallel Noise Barrier, Inse<br>flective Noise Barrier, Ak<br>rrier, Pooled-Fund Study,<br>ight Ratio, Frequency | ertion Loss,<br>psorptive Noise<br>Insertion Loss                                       | 15. NUMBER OF PAGES<br>141<br>16. PRICE CODE                                            |
| 17. SECURITY CLASSIFICATION<br>OF REPORT<br>Unclassified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18. SECURITY CLASSIFICATION<br>OF THIS PAGE<br>Unclassified                                                    | 19. SECURITY CLASSIFICATIO<br>OF ABSTRACT<br>Unclassified                               | ON 20. LIMITATION OF ABSTRACT<br>Unlimited                                              |

NSN 7540-01-280-5500

298-102

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18

#### ACKNOWLEDGMENTS

During the period October 1986 through April 1994, the U.S. Department of Transportation, Research and Special Programs Administration, John A. Volpe National Transportation Systems Center (U.S. DOT/RSPA/VNTSC) in support of the Federal Highway Administration (FHWA), Office of Engineering and Highway Operations Research and Development (OEHORD), and 17 sponsoring State transportation agencies conducted the National Pooled-Fund Study (NPFS), "Evaluation of Performance of Experimental Highway Noise Barriers." All data collected during the course of this study were obtained, processed, and analyzed by the Volpe Center's Acoustics Facility (AF).

The information provided by each of the 17 sponsoring State transportation agencies materially contributed to the success of the study. The authors are grateful to the representatives of all the State agencies for their support and timely commentary.

### TABLE OF CONTENTS

| SECTION |       |                                                                                               | PAGE                 |
|---------|-------|-----------------------------------------------------------------------------------------------|----------------------|
| 1.0     | INTRO | DUCTION                                                                                       | 1                    |
|         | 1.1   | OBJECTIVES                                                                                    | 1                    |
|         | 1.2   | BACKGROUND<br>1.2.1 Dulles barrier study<br>1.2.2 Montgomery County parallel barrier<br>study | •••1<br>•••2<br>•••4 |
| 2.0     | ADDIT | IONAL ANALYSES OF THE DULLES DATA                                                             | 7                    |
|         | 2.1   | NOISE BARRIER INSERTION LOSS VERSUS FREQUENCY.                                                | 7                    |
|         | 2.2   | NOISE BARRIER INSERTION LOSS DEGRADATION<br>VERSUS FREQUENCY                                  | 8<br>8<br>11         |
|         | 2.3   | NOISE BARRIER EDGE DIFFRACTION<br>VERSUS FREQUENCY                                            | 13<br>13<br>14<br>14 |
| 3.0     | ADDIT | IONAL ANALYSES OF THE MONTGOMERY COUNTY DATA                                                  | 19                   |
|         | 3.1   | COMPUTER MODELING: COMPARISON OF MEASURED AND<br>PREDICTED INSERTION LOSS DEGRADATION         | 19<br>19             |
| 4.0     | CONCL | USIONS                                                                                        | 23                   |
|         | 4.1   | THE DULLES STUDY                                                                              | 23                   |
|         | 4.2   | THE MONTGOMERY COUNTY STUDY                                                                   | 25                   |
| 5.0     | RECOM | MENDATIONS                                                                                    | 29                   |
|         | 5.1   | CRITERIA FOR CATEGORIZING PARALLEL<br>BARRIER SITES                                           | 29                   |

# TABLE OF CONTENTS (continued)

# SECTION

# PAGE

|       | 5.2    | COST OF VARIOUS METHODS OF<br>MINIMIZING DEGRADATIONS        |
|-------|--------|--------------------------------------------------------------|
|       | 5.3    | PARALLEL BARRIER MODELING                                    |
|       | 5.4    | COMPUTER MODEL VALIDATION                                    |
|       | 5.5    | ANSI S12.8-1987                                              |
| 6.0   | STUDY  | BENEFITS                                                     |
| APPEN | DIX A: | CHRONOLOGICAL HISTORY                                        |
| APPEN | DIX B: | NOISE BARRIER INSERTION LOSS<br>VERSUS FREQUENCY43           |
| APPEN | DIX C: | NOISE BARRIER INSERTION LOSS DEGRADATION<br>VERSUS FREQUENCY |
| APPEN | DIX D: | NOISE BARRIER EDGE DIFFRACTION<br>VERSUS FREQUENCY67         |
| APPEN | DIX E: | COMPUTER MODELING91                                          |
| APPEN | DIX F: | RECOMMENDED CHANGES TO ANSI S12.8-1987101                    |
|       |        |                                                              |

# LIST OF FIGURES

### FIGURE

| 1.                              | Truck B - Spectrum and summary specifications9                                                        |
|---------------------------------|-------------------------------------------------------------------------------------------------------|
| 2.                              | 90° profile, barrier site<br>Dulles Noise Barrier Project - 198910                                    |
| 3.                              | Microphone placement relative to zone of influence behind the barrier11                               |
| 4.                              | Microphone placement for examining barrier<br>edge diffraction effect13                               |
| 5.                              | Truck A - Spectrum and summary specifications16                                                       |
| 6.                              | Truck C - Spectrum and summary specifications17                                                       |
| 7.                              | Mean insertion loss degradations, ) <sub>IL</sub> (dB(A))<br>Montgomery County site - 199128          |
| 8.                              | 90° profile, equivalent site<br>artificial source measurements<br>Dulles Noise Barrier Project - 1989 |
| 9.                              | 90° profile, barrier site<br>artificial source measurements<br>Dulles Noise Barrier Project - 198945  |
|                                 |                                                                                                       |
| 10.                             | Insertion loss degradation () <sub>IL</sub> ) versus frequency<br>Truck B - reference microphone      |
| 10.<br>11.                      | Insertion loss degradation () <sub>IL</sub> ) versus frequency<br>Truck B - reference microphone      |
| 10.<br>11.<br>12.               | Insertion loss degradation () <sub>IL</sub> ) versus frequency<br>Truck B - reference microphone      |
| 10.<br>11.<br>12.<br>13.        | Insertion loss degradation () <sub>IL</sub> ) versus frequency<br>Truck B - reference microphone      |
| 10.<br>11.<br>12.<br>13.<br>14. | Insertion loss degradation () <sub>IL</sub> ) versus frequency<br>Truck B - reference microphone      |

LIST OF FIGURES (continued)

# FIGURE

# PAGE

| 16. | Insertion loss degradation () $_{IL}$ ) versus frequency<br>Truck B - 38 ft mast offset - low microphone62    |
|-----|---------------------------------------------------------------------------------------------------------------|
| 17. | Insertion loss degradation () $_{IL}$ ) versus frequency<br>Truck B - 88 ft mast offset - high microphone63   |
| 18. | Insertion loss degradation () $_{IL}$ ) versus frequency<br>Truck B - 88 ft mast offset - middle microphone64 |
| 19. | Insertion loss degradation () $_{IL}$ ) versus frequency<br>Truck B - 88 ft mast offset - low microphone65    |
| 20. | Edge diffraction versus frequency<br>Truck A in near lane - 23 ft reference microphone68                      |
| 21. | Edge diffraction versus frequency<br>Truck A in near lane - 21 ft reference microphone69                      |
| 22. | Edge diffraction versus frequency<br>Truck A in near lane - 19 ft reference microphone70                      |
| 23. | Edge diffraction versus frequency<br>Truck A in near lane - 17 ft reference microphone71                      |
| 24. | Edge diffraction versus frequency<br>Truck A in center lane - 23 ft reference microphone72                    |
| 25. | Edge diffraction versus frequency<br>Truck A in center lane - 21 ft reference microphone73                    |
| 26. | Edge diffraction versus frequency<br>Truck A in center lane - 19 ft reference microphone74                    |
| 27. | Edge diffraction versus frequency<br>Truck A in far lane - 23 ft reference microphone75                       |
| 28. | Edge diffraction versus frequency<br>Truck A in far lane - 21 ft reference microphone76                       |
| 29. | Edge diffraction versus frequency<br>Truck A in far lane - 19 ft reference microphone77                       |
| 30. | Edge diffraction versus frequency<br>Truck A in far lane - 17 ft reference microphone78                       |
|     |                                                                                                               |

LIST OF FIGURES (continued)

#### FIGURE

- 31. Edge diffraction versus frequency Truck B in near lane - 23 ft reference microphone.....79
- 32. Edge diffraction versus frequency Truck B in near lane - 21 ft reference microphone.....80
- 33. Edge diffraction versus frequency Truck B in near lane - 19 ft reference microphone.....81
- 34. Edge diffraction versus frequency Truck B in near lane - 17 ft reference microphone.....82
- 35. Edge diffraction versus frequency Truck B in center lane - 23 ft reference microphone.....83
- 36. Edge diffraction versus frequency Truck B in center lane - 21 ft reference microphone.....84
- 37. Edge diffraction versus frequency Truck B in center lane - 19 ft reference microphone.....85
- 38. Edge diffraction versus frequency Truck B in far lane - 23 ft reference microphone......86
- 39. Edge diffraction versus frequency Truck B in far lane - 21 ft reference microphone......87
- 40. Edge diffraction versus frequency Truck B in far lane - 19 ft reference microphone......88
- 41. Edge diffraction versus frequency Truck B in far lane - 17 ft reference microphone......89

# LIST OF TABLES

# TABLE

### <u>PAGE</u>

| 1.  | Summary of barrier configurations<br>Dulles Noise Barrier Project - 1989                                                               |
|-----|----------------------------------------------------------------------------------------------------------------------------------------|
| 2.  | (a) Comparison of measured and predicted ) <sub>IL</sub> , reference<br>microphone position - Montgomery<br>County study - 199120      |
|     | (b) Comparison of measured and predicted ) <sub>IL</sub> , high middle, and low microphone position - Montgomery County study - 199120 |
| 3.  | Guideline for categorizing parallel barrier sites based on the width-to-height ratio                                                   |
| 4.  | Octave-band L <sub>eq</sub> and meteorological conditions for select measurements of artificial fixed-point source46                   |
| 5.  | Barrier configuration #1 - 5/25/89<br>speaker 4 ft above ground plane47                                                                |
| 6.  | Barrier configuration #1 - 5/25/89<br>speaker 2 ft above ground plane48                                                                |
| 7.  | Barrier configuration #2 - 6/27/89<br>speaker 4 ft above ground plane49                                                                |
| 8.  | Barrier configuration #2 - 6/27/89<br>speaker 2 ft above ground plane50                                                                |
| 9.  | Barrier configuration #3 - 6/29/89<br>speaker 4 ft above ground plane51                                                                |
| 10. | Barrier configuration #3 - 6/29/89<br>speaker 2 ft above ground plane52                                                                |
| 11. | Barrier configuration #4 - 7/12/89<br>speaker 4 ft above ground plane53                                                                |
| 12. | Barrier configuration #4 - 7/12/89<br>speaker 2 ft above ground plane54                                                                |